Federal Aviation Administration's Efforts in Developing In-Flight Fire Tests for Evaluating Performance of Composite Skin

Federal Aviation Administration's Efforts in Developing In-Flight Fire Tests for Evaluating Performance of Composite Skin
paly

This article discusses the efforts of the Federal Aviation Administration (FAA) in developing in-flight fire tests for evaluating the performance of

About Federal Aviation Administration's Efforts in Developing In-Flight Fire Tests for Evaluating Performance of Composite Skin

PowerPoint presentation about 'Federal Aviation Administration's Efforts in Developing In-Flight Fire Tests for Evaluating Performance of Composite Skin'. This presentation describes the topic on This article discusses the efforts of the Federal Aviation Administration (FAA) in developing in-flight fire tests for evaluating the performance of. The key topics included in this slideshow are . Download this presentation absolutely free.

Presentation Transcript


Slide1Presented to:By: Date: Federal Aviation Administration International Aircraft Materials Fire Test Working Group Developing an In-flight Fire Condition for Evaluating Performance of Composite Skin IAMFT Working Group, Brazil Harry Webster, FAA Technical Center March 4, 2008

Slide22Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 2

Slide33Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 3

Slide44Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 4

Slide55Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 5

Slide66Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 6

Slide77Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 7 aerodynamic cooling

Slide88Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 8 aerodynamic cooling

Slide99Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 9 Background • Aluminum’s high capacity for heat rejection prevents melt-though while in-flight due to the cooling effect of the airflow around the fuselage. • Once on the ground, the cooling effect of the airflow no longer exists, resulting in skin melt-through. • Melt-through may allow rapid escape of trapped heat and gases to occur.

Slide1010Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 10 Background • Composite material may not be capable of dissipating heat from an in-flight fire, causing elevated temperatures in the crown area. • Extreme localized heat can potentially cause structural damage to composite surface. • Trapped heat in overhead area may pre-heat surrounding materials, allowing for ignition to occur more easily.

Slide1111Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 11 Objective • To develop an in-flight fire condition for the purposes of evaluating the melt-through performance of both metallic and composite structures. • Collect heat dissipation and burn-through data for aluminum material under in-flight conditions. • Collect heat dissipation and burn-through data for composite material under in-flight conditions.

Slide1212Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 12 Facilities • The tests described here will utilize the FAA Technical Center’s Airflow Induction Facility. – Subsonic wind tunnel • 5.5 foot diameter by 16 foot long test section • Airflow speed range of 200-650 mph • A test article was fabricated to simulate the crown-area surface of an aircraft with a fire in the cabin/overhead area

Slide1313Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 13 FAA Airflow Induction Facility

Slide1414Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 14 High Speed Test Section

Slide1515Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 15 Test Design • Construct long “ground plane” to smooth airflow over test section • Replaceable test section located near rear of ground plane • Construct aerodynamic faired “box” under test panel to hold heat / fire source • Initial tests with electric heat source to determine heat transfer characteristics

Slide1616Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 16 Ground plane- use to smooth airflow over test panel, simulating top of aircraft fuselage

Slide1717Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 17 Faired Heat Source Test Chamber

Slide1818Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 18 Electric Heat Source Configuration

Slide1919Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 19 Test Design- Live Fire • Develop a fire source that can be operated with the wind tunnel in operation • Size the fire intensity so that: – Aluminum panel burns through under static (non- airflow) conditions – Aluminum panel does NOT burn through under in- flight (airflow) conditions

Slide2020Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 20 Fire Source Selection • Several fire sources were evaluated for this test scenario – Jet fuel pool fire • Naturally aspirated • Boosted with compressed air – Propane burner – Oxy/Acetylene torch • Standard nozzle tip • Rosebud tip (s)

Slide2121Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 21 Fire Source Selection • Both the jet fuel pool fire and the propane torch suffered from oxygen starvation within the confines of the test fixture • The addition of a compressed air source to the fixture improved the performance • Ultimately, the fires from these sources were not repeatable within a reasonable tolerance

Slide2222Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 22 Jet Fuel Pool Fire Configuration

Slide2323Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 23 Fire Source Selection • To eliminate the oxygen starvation within the test fixture, an oxygen/acetylene torch was selected as the fire source – The standard nozzle was too narrow, producing a very hot flame that penetrated the aluminum test panel in under two minutes – The nozzle was replaced with a series of “rosebud” nozzles in an attempt to spread the flame over a wider area.  This was partially successful. – The solution was to place a steel plate in the fire path, forcing the flame to spread around it.

Slide2424Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 24 Oxygen-Acetylene Fire Source

Slide2525Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 25 Live Fire Calibration • With the goal of aluminum burn through static and no burn through under airflow conditions, the following settings were varied: – Acetylene pressure – Oxygen pressure – Mixture settings and resultant flame appearance – Distance between torch tip and test panel – Size of steel diffuser plate – Holes in steel diffuser plate – Location of steel diffuser plate

Slide2626Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 26 Live Fire Calibration • After much trial and error a set of conditions were established such that: – Static tests with aluminum panels yielded repeatable burn through times of 9-10 minutes – Tests in a 200 mph air stream produced no penetrations

Slide2727Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 27 Instrumentation • Interior panel temperature measured with two thermocouples, fixed to underside of test panel • Panel topside temperature measured with FLIR infrared camera • Flame temperature and heat flux • Flame Visual characteristics monitored by video

Slide2828Federal Aviation Administration Developing an In-Flight Burn Through Test March 4-5, 2008 28 Status • Test fixture capable of both electric and live fire heat sources. • Calibration of FLIR infrared camera in progress. • Test panels for both aluminum and composite materials are being fabricated.

Related


No related presentations.