Mtra. Alma Elsa Retureta Alvarez .


19 views
Uploaded on:
Category: Business / Finance
Description
UNIVERSIDAD VERACRUZANA. Mtra. Alma Elsa Retureta Alvarez. MATEMATICAS APLICADAS. UNIVERSIDAD VERACRUZANA. UNIDAD I FUNCIONES y GRÁFICAS. MATEMÀTICAS APLICADAS. UNIVERSIDAD VERACRUZANA. FUNCIONES y GRÁFICAS . MATEMÀTICAS APLICADAS. UNIVERSIDAD VERACRUZANA. ¿Qué son las funciones?.
Transcripts
Slide 1

UNIVERSIDAD VERACRUZANA Mtra. Alma Elsa Retureta Alvarez MATEMATICAS APLICADAS

Slide 2

UNIVERSIDAD VERACRUZANA UNIDAD I FUNCIONES y GRÁFICAS MATEMÀTICAS APLICADAS

Slide 3

UNIVERSIDAD VERACRUZANA FUNCIONES y GRÁFICAS MATEMÀTICAS APLICADAS

Slide 4

UNIVERSIDAD VERACRUZANA ¿Qué child las funciones? Una función, en matemáticas , es el término usado para indicar la relación o correspondencia entre dos o más cantidades. "Dos factors X Y están asociadas de tal forma que al asignar un valor a X entonces, por alguna regla o correspondencia, se asigna automáticamente un valor a Y, se dice que Y es una función (unívoca) de X.  La variable X, a la que se asignan libremente valores , se llama variable independiente, mientras que la variable Y, cuyos valores dependen de la X, se llama factors dependientes.  Los valores permitidos de X constituyen el dominio de definición de la función y los valores   que toma Y constituye su recorrido". MATEMÀTICAS APLICADAS

Slide 5

UNIVERSIDAD VERACRUZANA ¿Dónde se ocupan? Las funciones matemáticas pueden referirse a situaciones cotidianas y Generalmente  se hace uso de las funciones reales, aún cuando el ser humano no se  da cuenta. Las funciones child de mucho valor y utilidad para resolver problemas de la vida diaria en cualquier área donde haya que relacionar factors. stories como : *El valor del consumo mensual de agua consumable que depende del número de metros cúbicos consumidos en el mes. * El costo de una llamada telefónica que depende de su duración. *La estatura de un niño que depende de su edad, and so forth. MATEMÀTICAS APLICADAS

Slide 6

UNIVERSIDAD VERACRUZANA TIPOS DE FUNCIONES POLINOMICAS ALGEBRAICAS RACIONALES RADICALES FUNCIONES EXPONENCIALES TRASCENDENTES LOGARITMICAS TRIGONOMETRICAS MATEMÀTICAS APLICADAS

Slide 7

UNIVERSIDAD VERACRUZANA Funciones Algebraicas En las funciones algebraicas las operaciones que feed que efectuar con la variable independiente child: la adición, sustracción, multiplicación, división, potenciación y radicación Las funciones algebraicas pueden ser: Funciones explícitas Si se pueden obtener las imágenes de x por basic sustitución. f(x) = 5x - 2 Funciones implícitas Si no se pueden obtener las imágenes de x por straightforward sustitución, sino que es preciso efectuar operaciones. 5x - y - 2 = 0 MATEMÀTICAS APLICADAS

Slide 8

UNIVERSIDAD VERACRUZANA Funciones Algebraicas Función lineal:            L a función lineal (función polinomial de groundwork grado) es de la forma   y = f (x) = hatchet + b ; a y b child números dados; el dominio y contradominio es el conjunto de todos los números reales. La gráfica de cualquier función lineal es una línea recta. La a representa la pendiente de la recta y b , el intercepto con el eje y (u ordenada en el origen). Como ya mencionamos risks, el intercepto con el eje y , es b ; para hallar el intercepto con el eje x (o abscisa en el origen),  se iguala la ecuación de la función a 0 y se despeja el valor respectivo para x . MATEMÀTICAS APLICADAS

Slide 9

UNIVERSIDAD VERACRUZANA Funciones Lineales 1. y = x . S o l u c i ó n : 2. y = - 2x S o l u c i ó n : 3. y = x + 2 S o l u c i ó n : 4. y = x - 3 S o l u c i ó n : MATEMÀTICAS APLICADAS

Slide 10

UNIVERSIDAD VERACRUZANA Funciones polinómicas : Son las funciones que vienen definidas por un polinomio. f(x) = a 0 + a 1 x + a 1 x² + a 1 x³ +··· + a n x n Su dominio es R , es decir, cualquier número genuine tiene imagen. Funciones constantes: El criterio viene dado por un número genuine. f(x)= k La gráfica es una recta level paralela an al eje de abscisas. MATEMÀTICAS APLICADAS

Slide 11

UNIVERSIDAD VERACRUZANA Funciones racionales Una función racional es aquella que puede expresarse como el cociente de dos funciones polinomiales . Esto es, una función racional es de la forma los números reales excepto los valores de x que anulan el denominador, Q ( x ) = 0. Funciones radicales El criterio viene dado por la variable x bajo el signo radical. El dominio de una función irracional de índice impar es R. El dominio de una función irracional de índice standard está formado por todos los valores que hacen que el radicando ocean leader o igual que cero. MATEMÀTICAS APLICADAS

Slide 12

UNIVERSIDAD VERACRUZANA Funciones trascendentes La variable independiente figura como exponente, o como índice de la raíz, o se halla afectada del signo logaritmo o de cualquiera de los signos que emplea la trigonometría. Función exponencial Sea an un número genuine positivo. La función que a cada número genuine x le hace corresponder la potencia a x se llama función exponencial de base a y exponente x . Funciones logarítmicas La función logarítmica en base an es la función inversa de la exponencial en base a. MATEMÀTICAS APLICADAS

Slide 13

UNIVERSIDAD VERACRUZANA Función cuadrática MATEMÀTICAS APLICADAS

Slide 14

S o l u c i o n e s UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS

Slide 15

S o l u c i o n e s UNIVERSIDAD VERACRUZANA MATEMÀTICAS APLICADAS

Slide 16

UNIVERSIDAD VERACRUZANA ¿Cuándo una gráfica no corresponde an una función? De las dos gráficas que se muestran a continuación, la de la izquierda corresponde an una función y la derecha no. En ésta a cada valor de la variable independiente X, le corresponde un único valor imagen de la variable dependiente Y  En ésta roughage algunos valores de la variable X a los que corresponden más de un valor de la variable Y. Lo que contradice la definición de función. MATEMÀTICAS APLICADAS

Slide 17

UNIVERSIDAD VERACRUZANA Dominio Se llama dominio de definición de una función f , y se designa por Dom f , al conjunto de valores de x para los cuales existe la función, es decir, para los cuales podemos calcular y = f (x). En la función que tiene por expresión algebraica y = 2x +1 podemos dar a la variable x el valor que queramos y con ello obtener un correspondiente valor de y. ( EVALUAR ) Decimos que en este caso dicha función está definida en todo R (conjunto de los números reales).  MATEMÀTICAS APLICADAS

Slide 18

UNIVERSIDAD VERACRUZANA Sin ban la función y = 1/x no permite calcular el correspondiente valor de y para todos los valores de x. En este caso el valor x=0 no puede ser del dominio de la función. ( EVALUAR ) Cuando una función se nos presenta a través de su gráfica, simplemente con proyectar sobre el eje de abscisas dicha gráfica conseguimos el dominio de definición . Esto es porque cualquier valor de x del dominio tiene su correspondiente imagen y por ello le corresponde un punto de la gráfica. Y éste punto es el que al proyectar la misma sobre el eje Ox nos incluye ese valor dentro del dominio. MATEMÀTICAS APLICADAS

Slide 19

UNIVERSIDAD VERACRUZANA En el ejemplo vemos coloreado de azul el dominio. En este caso tenemos que Dom f = (- ∞, 2) U (2, 7] MATEMÀTICAS APLICADAS

Slide 20

UNIVERSIDAD VERACRUZANA SISTEMAS COMPUTACIONALES EJEMPLOS FUNCIONES POLINÓMICAS: Son aquellas cuya expresión algebraica es un polinomio; es decir, las funciones polinómicas , tienen como dominio de definición todo el conjunto de los números reales: R f( x )= 3x 5 - 8x + 1;   D(f) = R g( x )= 2x + 3;   D(g) = R h( x)=½ ;   D(h) = R

Slide 21

UNIVERSIDAD VERACRUZANA FUNCIONES RACIONALES: Si la función es racional, esto es que su expresión es un cociente de dos polinomios, nos va a plantear el problema de tener que excluir del dominio las raíces del polinomio denominador . Por ejemplo: I) Resolvemos la ecuación x 2 - 9 = 0; y obtenemos x 1 = +3  y   x 2 = - 3.         Por lo tanto D(f) = R \ {+3, - 3} MATEMÀTICAS APLICADAS

Slide 22

UNIVERSIDAD VERACRUZANA II) Resolvemos la ecuación x 2 + 1 = 0; y nos encontramos que no tiene solución. No se han encontrado valores que anulen el denominador. y por lo tanto no tenemos que excluirlos del dominio. Por lo tanto D(f) = R. MATEMÀTICAS APLICADAS

Slide 23

UNIVERSIDAD VERACRUZANA FUNCIONES IRRACIONALES: Funciones irracionales child las que vienen expresadas a través de un radical que lleve en su radicando la variable independiente . Si el radical tiene índice impar, entonces el dominio será todo el conjunto R de los números reales porque al elegir cualquier valor de x siempre vamos a poder calcular la raíz de índice impar de la expresión que haya en el radicando. Si el radical tiene índice standard, para los valores de x que hagan el radicando negativo no existirá la raíz y por tanto no tendrán imagen . MATEMÀTICAS APLICADAS

Slide 24

UNIVERSIDAD VERACRUZANA II) I) Resolvemos la inecuación x 2 - 25 > 0; y obtenemos (x + 5)·(x - 5) > 0 R nos queda dividido en tres zonas y probamos en cuál de ellas se da que el signo del radicando ocean positivo. Resolvemos la inecuación x +1 > 0; ==> x > - 1;        x+1 es una expresión positiva si x pertenece al intervalo [-1, +∞). Por lo tanto D(f) = [-1, +∞). Por lo tanto D(g) = (- ∞, - 5] U [+5, +∞) MATEMÀTICAS APLICADAS

Slide 25

UNIVERSIDAD VERACRUZANA ¿En que se traduce esto? En tener que excluir de las zonas donde el radicando ocean positivo los extremos - 2 y +4. III) Resolvemos la inecuación x 2 - 2x - 8 > 0; y obtenemos (x + 2)·(x - 4) >0; Observar que la inecuación se plante con desigualdad estricta, esto es porque el radicando está en un denominador y por lo

Recommended
View more...