Copyright Protection for Pearson Prentice Hall Work


This disclaimer is included in Pearson Prentice Hall work from 2005, and warns that the material is protected by United States copyright laws. It is intended solely for use by
- Uploaded on | 4 Views
-
ameliawalker
About Copyright Protection for Pearson Prentice Hall Work
PowerPoint presentation about 'Copyright Protection for Pearson Prentice Hall Work'. This presentation describes the topic on This disclaimer is included in Pearson Prentice Hall work from 2005, and warns that the material is protected by United States copyright laws. It is intended solely for use by. The key topics included in this slideshow are . Download this presentation absolutely free.
Presentation Transcript
Slide1© 2005 Pearson Prentice HallThis work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials. Lecture PowerPoints Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli 1
Slide2Chapter 4Dynamics: Newton’s Laws of Motion 2
Slide3Chapter 4 Objectives• Force – Vector nature of force – Weight – Normal force • Mass • Reference frames – Inertial – Noninertial • Newton’s laws – First law (law of inertia) – Second law (F = ma) – Third law (action-reaction force pairs) • Free-body diagrams • Friction – Static friction – Kinetic friction • Strings and pulleys – Assumptions – Transmission of force Demonstrate an understanding in problem applications as well as in conceptual situations of: 3
Slide4Units of Chapter 4• Force • Newton’s First Law of Motion • Mass • Newton’s Second Law of Motion • Newton’s Third Law of Motion • Weight – the Force of Gravity; and the Normal Force • Solving Problems with Newton’s Laws: Free-Body Diagrams • Applications Involving Friction, Inclines • Problem Solving – A General Approach 4
Slide54-1 ForceA force is a push or pull . An object at rest needs a force to get it moving ; a moving object needs a force to change its velocity . The magnitude of a force can be measured using a spring scale. 5
Slide64-2 Newton’s First Law of MotionNewton’s first law is often called the law of inertia . Every object continues in its state of rest, or of uniform velocity in a straight line, as long as no net force acts on it. 6
Slide74-2 Newton’s First Law of MotionInertial reference frames : An inertial reference frame is one in which Newton’s first law is valid. This excludes rotating and accelerating frames. 7
Slide84-3 MassMass is the measure of inertia of an object. In the SI system, mass is measured in kilograms . Mass is not weight : Mass is a property of an object. Weight is the force exerted on that object by gravity. If you go to the moon, whose gravitational acceleration is about 1/6 g , you will weigh much less. Your mass, however, will be the same. 8
Slide94-4 Newton’s Second Law of MotionNewton’s second law is the relation between acceleration and force . Acceleration is proportional to force and inversely proportional to mass. (4-1) 9
Slide104-4 Newton’s Second Law of MotionForce is a vector , so is true along each coordinate axis. The unit of force in the SI system is the newton (N). Note that the pound is a unit of force , not of mass, and can therefore be equated to newtons but not to kilograms. 10
Slide11Figure 4-6Example 4-3 11
Slide124-5 Newton’s Third Law of MotionAny time a force is exerted on an object, that force is caused by another object. Newton’s third law : Whenever one object exerts a force on a second object, the second exerts an equal force in the opposite direction on the first. 12
Slide134-5 Newton’s Third Law of MotionA key to the correct application of the third law is that the forces are exerted on different objects . Make sure you don’t use them as if they were acting on the same object. 13
Slide144-5 Newton’s Third Law of MotionRocket propulsion can also be explained using Newton’s third law: hot gases from combustion spew out of the tail of the rocket at high speeds. The reaction force is what propels the rocket. Note that the rocket does not need anything to “push” against. 14
Slide154-5 Newton’s Third Law of MotionHelpful notation: the first subscript is the object that the force is being exerted on; the second is the source. This need not be done indefinitely, but is a good idea until you get used to dealing with these forces. (4-2) 15
Slide164-6 Weight – the Force of Gravity;and the Normal Force Weight is the force exerted on an object by gravity. Close to the surface of the Earth, where the gravitational force is nearly constant, the weight is: 16
Slide174-6 Weight – the Force of Gravity;and the Normal Force An object at rest must have no net force on it. If it is sitting on a table, the force of gravity is still there; what other force is there? The force exerted perpendicular to a surface is called the normal force . It is exactly as large as needed to balance the force from the object (if the required force gets too big, something breaks!) 17
Slide184-7 Solving Problems with Newton’sLaws – Free-Body Diagrams • Two people are exerting forces on a crate. One exerts a force of 100 Newtons at right angles to the other person’s 100 Newton force. What is the resultant accelerating force on the crate? 18
Slide19 4-7 Solving Problems with Newton’s Laws – Free-Body Diagrams • Free-body or Force diagram - a diagram showing all the forces acting on each object involved. – Choose one object – Draw an arrow to represent each force acting on the object – Do NOT show forces that the object exerts on other objects. – If the problem involves more than one object, a separate free-body diagram is needed for each object. 19
Slide204-7 Solving Problems with Newton’s Laws –Free-Body Diagrams 1. Draw a sketch . 2. For one object, draw a free-body diagram , showing all the forces acting on the object. Make the magnitudes and directions as accurate as you can. Label each force. If there are multiple objects, draw a separate diagram for each one. 3. Resolve vectors into components. 4. Apply Newton’s second law to each component. 5. Solve. 20
Slide214-7 Solving Problems with Newton’s Laws –Free-Body Diagrams When a cord or rope pulls on an object, it is said to be under tension , and the force it exerts is called a tension force . 21
Slide224-8 Applications Involving Friction, InclinesOn a microscopic scale, most surfaces are rough. The exact details are not yet known, but the force can be modeled in a simple way. For kinetic – sliding – friction, we write: is the coefficient of kinetic friction, and is different for every pair of surfaces. 22
Slide23 4-8 Applications Involving Friction, Inclines • Friction acts in a direction to oppose motion. • Kinetic friction (F fr = u k F N ) – is proportional to normal force • Normal force is the force that either object exerts on the other, perpendicular to their common surface of contact. – depends on the nature of the two sliding surfaces • Generally, the rougher the surface the greater the friction. 23
Slide244-8 Applications Involving Friction, Inclines• µ k – is called the coefficient of kinetic friction – Is independent of • Sliding speed • Area of contact – Its value depends on • the nature of the two surfaces. • Whether the surfaces are wet or dry. • How much the surfaces have been sanded or polished. 24
Slide254-8 Applications Involving Friction, InclinesStatic friction is the frictional force between two surfaces that are not moving along each other. Static friction keeps objects on inclines from sliding, and keeps objects from moving when a force is first applied. 25
Slide264-8 Applications Involving Friction, Inclines26 F fr = u k F N F fr ≤ µ s F N
Slide27The static frictional force increases as the applied force increases, until it reaches its maximum . Then the object starts to move, and the kinetic frictional force takes over. 4-8 Applications Involving Friction, Inclines 27
Slide284-8 Applications Involving Friction, InclinesAn object sliding down an incline has three forces acting on it: the normal force, gravity , and the frictional force. • The normal force is always perpendicular to the surface. • The friction force is parallel to it. • The gravitational force points down . If the object is at rest, the forces are the same except that we use the static frictional force, and the sum of the forces is zero. 28
Slide294-9 Problem Solving – A General Approach1. Read the problem carefully; then read it again. 2. Draw a sketch, and then a free-body diagram. 3. Choose a convenient coordinate system . 4. List the known and unknown quantities; find relationships between the knowns and the unknowns. 5. Estimate the answer. 6. Solve the problem without putting in any numbers ( algebraically ); once you are satisfied, put the numbers in. 7. Keep track of dimensions . 8. Make sure your answer is reasonable . 29
Slide30Summary of Chapter 4• Newton’s first law: If the net force on an object is zero, it will remain either at rest or moving in a straight line at constant speed. • Newton’s second law: • Newton’s third law: • Weight is the gravitational force on an object. • The frictional force can be written: (kinetic friction) or (static friction) • Free-body diagrams are essential for problem- solving 30
Slide31Figure 4-35Question 2 31
Slide32Figure 4-36Question 9 32
Slide33Figure 4-38Problem 5 33
Slide34Figure 4-39Problem 17 34
Slide35Figure 4-40Problem 19 35
Slide36Figure 4-42Problem 23 36
Slide37Figure 4-43Problem 24 37
Slide38Figure 4-44Problem 25 38
Slide39Figure 4-45Problem 26 39
Slide40Figure 4-46Problem 27 40
Slide41Figure 4-47Problem 28 41
Slide42Figure 4-48Problem 29 42
Slide43Figure 4-49Problem 31 43
Slide44Figure 4-50Problem 32 44
Slide45Figure 4-51Problem 33 45
Slide46Figure 4-52Problem 34 46
Slide47Figure 4-53Problem 35 47
Slide48Figure 4-54Problem 48 48
Slide49Figure 4-55Problems 52 and 53 49
Slide50Figure 4-56Problem 61 50
Slide51Figure 4-57Problems 63 and 64 51
Slide52Figure 4-58Problem 75 52
Slide53Figure 4-59Problem 76 53
Slide54Figure 4-60Problem 78 54
Slide55Figure 4-61Problem 80 55
Slide56Figure 4-62Problem 81 56
Slide57Figure 4-64Problem 87 57
Slide58Table 4-1Units for Mass and Force 58
Slide59Table 4-2Coefficients of Friction 59