# Exponential Equations

Presentation on solving exponential equations using rules for working with exponents. Material for practicing and improving skills in solving these equations. 40 min. Level 2 Math, Technical Integrated High School. EU innovative education project.

• Uploaded on | 1 Views
• bajram

PowerPoint presentation about 'Exponential Equations'. This presentation describes the topic on Presentation on solving exponential equations using rules for working with exponents. Material for practicing and improving skills in solving these equations. 40 min. Level 2 Math, Technical Integrated High School. EU innovative education project.. The key topics included in this slideshow are . Download this presentation absolutely free.

## Presentation Transcript

1. Nzev koly Integrovan stedn kola technick, Vysok Mto, Mldenick 380 slo a nzev projektu CZ.1.07/1.5.00/34.0374 Inovace vzdlvacch metod EU - OP VK slo a nzev klov aktivity III/2 Inovace a zkvalitnn vuky prostednictvm ICT Autor Ing. Pavel Novotn slo materilu VY_32_INOVACE_MAT_2S1N_NO_09_15 Nzev Exponenciln rovnice2 Druh uebnho materilu Prezentace Pedmt Matematika Ronk 2 (studijn), 1 (nstavbov) Tmatick celek Funkce Anotace een exponencilnch rovnic s vyuitm pravidel pro prci s mocninami Metodick pokyn Materil slou k procvien een exponencilnch rovnic s postupnmi kroky (40 min) Klov slova Exponenciln rovnice, mocnina Oekvan vstup ci si prohloub dovednosti pi een exponencilnch rovnic Datum vytvoen 18.9.2013

2. ete exponenciln rovnici 9 x + 3 . 3 2x + 10 = 1 (3 2 ) x + 3 . 3 2x + 10 = 3 0 3 2x + 6 . 3 2x + 10 = 3 0 3 4x + 16 = 3 0 4x + 16 = 0 4x = -16 x = - 4 4 2x + 2 : 8 x + 1 = 16 x + 4 (2 2 ) 2x + 2 : (2 3 ) x + 1 = (2 4 ) x + 4 2 4x + 4 : 2 3x + 3 = 2 4x +16 2 x + 1 = 3 4x + 16 x + 1 = 4x + 16 -3x = 15 x = - 5

3. ete exponenciln rovnici 4 2x + 2 : 8 x + 1 = 16 x + 4 (2 2 ) 2x + 2 : (2 3 ) x + 1 = (2 4 ) x + 4 2 4x + 4 : 2 3x + 3 = 2 4x +16 2 x + 1 = 3 4x + 16 x + 1 = 4x + 16 -3x = 15 x = - 5 0,2 x . 5 2x - 1 = 625 2 (5 -1 ) x . 5 2x - 1 = (5 4 ) 2 5 -x . 5 2x - 1 = 5 8 5 x 1 = 5 8 x 1 = 8 x = 9

4. -6x + 10 = - 5x - 10 ete exponenciln rovnici 0,2 x . 5 2x - 1 = 625 2 (5 -1 ) x . 5 2x - 1 = (5 4 ) 2 5 -x . 5 2x - 1 = 5 8 5 x 1 = 5 8 x 1 = 8 x = 9 4 x + 3 : 16 2x - 1 = (2 2 ) x + 3 : (2 4 ) 2x - 1 = 2 2x + 6 : 2 8x - 4 = 2 -6x + 10 = 2 -5x - 10 - x = - 20 x = 20

5. ete exponenciln rovnici 4 x + 3 : 16 2x - 1 = (2 2 ) x + 3 : (2 4 ) 2x - 1 = 2 2x + 6 : 2 8x - 4 = 2 -6x + 10 = 2 -5x - 10 -6x + 10 = - 5x - 10 - x = - 20 x = 20 3x 5 = - 3x + 7 6x = 12 x = 2

6. ete exponenciln rovnici - x + 3 = 1 - x = -2 x = 2