CCAS CPB Workshop Curriculum Outline Perfusion: What you might not know - PDF Document

0 Views
Download Presentation

CCAS CPB Workshop Curriculum Outline Perfusion: What you might not know

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. CCAS CPB Workshop Curriculum Outline Perfusion: What you might not know Scott Lawson, CCP Carrie Striker, CCP Disclosure: Nothing to disclose Objectives: * Demonstrate how the cardiopulmonary bypass machine works and be able to help trouble- shoot problems. * Explain some of the different techniques of cardiopulmonary bypass. I. Heart Lung Machine Brief Overview a.Review blood flow through the heart lung machine (Andropoulos, D. Anesthesia for Congenital Heart Disease. 2nd Ed. 2010, p. 96) Page 1 of 7

  2. II. Anatomy of the Pump a.Propulsion i.Arterial Pump 1.Roller Pump 2.Centrifugal Pump ii.Cardioplegia Pump iii.MUF Pump iv.Vent Pump(s) v.Field Sucker Pump (s) vi.Vacuum: Negative pressure on the venous line for drainage purposes b.Ventilation and Oxygenation i.Blender – Oxygenation Fraction ii.Sweep Gas – Ventilation iii.Exogenous CO2 iv.Vaporizer – Volatile anesthetics c.Monitoring i.Pressures: Arterial, Cardioplegia, MUF ii.Blood Flow: Pump Display, Doppler reading iii.Saturations: Venous, Arterial, Somatic/Cerebral, Flank/Renal iv.Temperatures: Arterial, Venous, Cardioplegia, MUF 1.Temperature Control: a.Heater Cooler v.Air bubble Protection: Bubble Detector, Level Detector vi.Blood Gas/Electrolyte/Hemoglobin and Hematocrit/ACT/Whole Blood Hemostasis Testing: Point of Care Blood Gas and Activated Clotting Time machine, In-line monitoring (CDI, Saturation/Hematocrit), TEG or ROTEM d.Disposables i.Venous Reservoir ii.Oxygenator 1.Integrated Arterial Line Filter 2.Standalone Arterial Line Filter iii.Arterial Venous Loop Size iv.Arterial Raceway size for Roller Pump v.Tubing vi.Cardioplegia vii.Hemoconcentrator viii.Cannulae e.Route of Blood Flow through the actual Heart Lung Machine Page 2 of 7

  3. III. Perfusionist Pre-Bypass Considerations a.Selection of Disposables i.Calculation of Cardiac Output (CO) using patient height, weight and BSA (Appendix A) 1. Cardiac Index = 1.8 – 3.0 L/min/m2 a.Determine oxygenator, venous reservoir, and arterial venous loop based on CO, cardiac lesion, suspected patient physiology and proposed surgical repair (see Appendix B) b.Priming of the Pump i.Fluids to clear prime CPB circuit: Crystalloids: Plasmalyte, Normasol ii.Determine clear prime volume based on prime volume of disposables chosen iii.Calculation of Estimated Blood Volume (EBV) and Post-dilutional HCT EBV: Weight (kg) ≥ 40: Weight (kg) ≥ 20: Weight (kg) ≥ 10: Weight (kg) ≥ 4: Weight (kg) ≥ 1: 65mL/kg 75mL/kg 85mL/kg 90mL/kg 100mL/kg 1.Determine necessary amount of pRBCs to maintain appropriate HCT iv.Colloid osmotic pressure 1.FFP for coagulation factors and maintenance of colloid osmotic pressure 2.Albumin v.Buffer prime: sodium bicarbonate and/ or pre-BUF vi.Drugs: heparin, antibiotics, possible steroids, cardioplegia solution (depolarizing/intracellular), mannitol, antifibrinolytics Conduct of CPB: What is the Perfusionist looking for? a.Initiation of Flow i.Appropriate Cannula Placement 1.Arterial: looking for appropriate arterial pressure to confirm cannula placement. IV. Page 3 of 7

  4. a.High pressure spike may indicate placement of the aortic cannula in a false lumen and/or possible dissection. 2.Venous: enough return to get reasonable cardiac output as determined by perfusion adequacy indicators ii.Oxygenation 1.Look for blood color difference between arterial and venous to ensure oxygenator and oxygen source is working. Blood gas confirmation if necessary. b.Peri-CPB i.Maintenance of Physiology 1.Following venous, cerebral and renal saturations a.If low, may increase flow, give pRBCS, pH-stat v. alpha- stat gas strategy, increase MAP 2.Manipulation of Patient Pressures a.Maintenance of calculated cardiac output i.Specific indices ii.Depends on patient’s physiology iii.Perfusion adequacy markers iv.Appropriate saturations 3.Look for development of metabolic acidosis (blood gasses or inline monitoring) a.Increase flow, give pRBCs, decrease temperature, alter gas strategy (pH-stat v. alpha stat) i.pH-stat: temperature corrected blood gases requiring exogenous CO2 ii.alpha-stat: blood gases measured at 37ºC ii.Cardioplegic arrest 1.Antegrade: promote flow down the coronaries by slightly increasing the cardioplegia pump flow rate and pressure to gently close the aortic valve if not obtaining an arrest 2.Retrograde: monitor coronary sinus pressures 3.Re-dose: follow EKG or field movement for reemergence of activity c.Coming off CPB: i.Clamp venous line to begin loading the patient’s heart with volume 1.Use MAP, CVP and heart appearance as guide ii.Drop flow in increments to transition flow responsibilities to the heart iii.Modified Ultrafiltration (MUF) 1.Arterial to Venous MUF: ensuring negative pressure is not exerted on the arterial line causing air cavitation at the aortic cannula Page 4 of 7

  5. 2.Use MAP, CVP, saturations and heart appearance as guide for fluid removal 3.End-points of MUF: increase Hgb, decrease in CVP, increase in MAP V. Conduct of Bypass: How can the anesthesiologist help? a.Initiation of Flow i.Before full flow: 1.Anesthesiologist: maintain oxygenation and ventilation b.Peri-CPB: i.Balance of Pressures: 1.Lowering the Pressure a.Anesthesiologist: Vasodilators (nipride, nitroglycerine, nicardipine) b.Perfusionist: Volatile Anesthetic (Iso, sevo), dropping flow, pH stat strategy 2.Increasing the Pressure a.Anesthesiologist: Pressors b.Perfusionist: Increasing flow, phenylephrine, alpha stat gas strategy ii.Metabolic Augmentation of Flow 1.Acidosis a.Anesthesiologist: Drop MAPs to increase flow, inspect surgical field for obvious mechanical deviations, communication with perfusionist to surgeon b.Perfusionist: Increase Flow, increase oxygenation, give red blood cells to increase Hgb, alter gas strategy (MAPCA manipulation) , investigate cannula placement, decrease temperature c.Coming off CPB: i.Oxygenation and Ventilation Transition from pump to patient ii.MUF: Communicate with Perfusionist regarding pressure manipulation iii.Medications iv.Volume: Help from the pump, cell saver Page 5 of 7

  6. Appendix A: Calculation of Cardiac Output on Cardiopulmonary Bypass  ( ) Weight Height  BSA 3636   2 2 2500 ( / min/ ) ( ) CO mL m BSA m Page 6 of 7

  7. Appendix B: Determining Cardiopulmonary Bypass Equipment Selection CARDIOPULMONARY BYPASS PROCEDURE Disposable Perfusion Supplies and Flow Ranges Lilliput 2 w/ Phosphorylcholine inert surface Optimin Optima Capiox RX 05 w/ Xcoating Oxygenator+ SMARXT surface modified SMARXT surface modified Max flow: 2300 ml/min (manufac. recommend.) to 3300 ml/min (A.A.M.I Standard) Max flow: 1500 ml/min (manufac. recommend.) Max flow: 5000 ml/min (manufac. recommend.) Flow over 5000 ml/min (manufac. recommend.) Approximate blood flow cc/min Equipment Selection 3/16” x ¼” up to 1000 ml/min ¼” x ¼” up to 1400 ml/min ¼” x ¼” up to 1400 ml/min ¼” x 3/8” up to 3000 ml/min 3/8”x 3/8” up to 5000 ml/min 3/8” x ½” over 5000 ml/min 3/8”x 3/8” up to 5000 ml/min A-V loop Pediatric/adult pack using primarily 3/8” tubing SMARXT surface modified Pediatric/adult pack using primarily 3/8” tubing SMARXT surface modified Infant pack using primarily ¼” tubing SMARXT surface modified Infant pack using primarily ¼” tubing SMARXT surface modified Tubing + Full Flow = 1061 mL/min 3/16” @ < 600 mls/min or ¼” @ > 600 mls/min Terumo Capiox 50 cc ¼” @ <2500 mls/min or 3/8”@ > 2500 mls/min 3/8” @ <5000 mls/min or ½” >5000 mls/min Pump raceway tubing 3/8” @ < 5000 mls/min Bubble trap + Terumo Capiox 50 cc Terumo Capiox 150 cc Terumo Capiox 150 cc Cardiotomy /Venous Reservoir & safe operating level (SOL) 1100 cc capacity SOL = 50 cc 1800 cc capacity SOL = 100 cc 3000 cc capacity SOL = 200 cc 3000 cc capacity SOL = 400 cc Custom Infant CSC14 4:1 w/ Buretrol SMARXT surface modified ¼” w/ valve (vacuum relief check valve may be modified to accommodate high flow) Asahi PAN 03 400 cc Custom Adult CSC14 4:1 w/ 2 Buretrols SMARXT surface modified Custom Adult CSC14 4:1 w/ 2 Buretrols SMARXT surface modified Custom Infant CSC14 4:1 w/ Buretrol SMARXT surface modified Cardioplegia set + ¼” w/ valve (vacuum relief check valve may be modified to accommodate high flow) ¼” w/ valve modified or 3/8” collapsible ¼” w/ valve modified or 3/8” collapsible Ventricular venting Hemoconcentrator + Approx. circuit Asahi PAN 06 700 cc Asahi PAN 06 1500 cc Asahi PAN 06 1800 cc Page 7 of 7