# Power Series Representations and Radius of Convergence

This section covers finding power series representations centered at x=0 and determining the radius of convergence. Examples include an infinite geometric series and a series with radius of convergence equal to 1.

PowerPoint presentation about 'Power Series Representations and Radius of Convergence'. This presentation describes the topic on This section covers finding power series representations centered at x=0 and determining the radius of convergence. Examples include an infinite geometric series and a series with radius of convergence equal to 1.. The key topics included in this slideshow are . Download this presentation absolutely free.

## Presentation Transcript

Slide24.Find the power series representation for centered about x = 0 and specify its radius of convergence. Infinite geometric with first term 1/3 and r = -2x/3 Converges when |r| < 1

Slide38.  Find the power series representation forcentered about x = 0 and specify its radius of convergence. Radius of Convergence is 1

Slide412.  Use the power series representation ofpower series representation of the function to produce a

Slide518.Find a power series representation of f(x) = ln x centered      at x = 1.  Specify the radius of convergence of the power      series. Radius of convergence is 1

Slide626.Use an appropriate identity to find the Maclaurin series      for f(x) = sin x cos x

Slide730.  Given the function f defined bya. Find the first three nonzero terms in the Maclaurin      series for the function f.

Slide830.  Given the function f defined byb.  Find the first three terms in the Maclaurin series for the function g defined by

Slide930.  Given the function f defined byb.  Find the first four terms in the Maclaurin series for the function h defined by