Introduction to the STL: Containers, Iterators, and Algorithms

Introduction to the STL: Containers, Iterators, and Algorithms
paly

This lecture introduces the STL and its components, including the containers and algorithms of the C++ standard library. The lecture covers the fundamental concepts and provides examples of various containers and algorithms. It also presents the key notions of sequence and iterator for processing data in a C++ program.

About Introduction to the STL: Containers, Iterators, and Algorithms

PowerPoint presentation about 'Introduction to the STL: Containers, Iterators, and Algorithms'. This presentation describes the topic on This lecture introduces the STL and its components, including the containers and algorithms of the C++ standard library. The lecture covers the fundamental concepts and provides examples of various containers and algorithms. It also presents the key notions of sequence and iterator for processing data in a C++ program.. The key topics included in this slideshow are STL, containers, algorithms, C++ standard library, sequence, iterator,. Download this presentation absolutely free.

Presentation Transcript


1. Chapter 20 The STL (containers, iterators, and algorithms) John Keysers Modifications of Slides by Bjarne Stroustrup www.stroustrup.com/Programming

2. Abstract This lecture and the next present the STL the containers and algorithms part of the C++ standard library The STL is an extensible framework dealing with data in a C++ program. First, I will present the general ideal, then the fundamental concepts, and finally examples of containers and algorithms. The key notions of sequence and iterator used to tie data together with algorithms (for general processing) are also presented. 2 Stroustrup/Programming - Nov'13

3. Overview Common tasks and ideals Generic programming Containers, algorithms, and iterators The simplest algorithm: find() Parameterization of algorithms find_if() and function objects Sequence containers vector and list Associative containers map, set Standard algorithms copy, sort, Input iterators and output iterators List of useful facilities Headers, algorithms, containers, function objects 3 Stroustrup/Programming - Nov'13

4. Common tasks Collect data into containers Organize data For printing For fast access Retrieve data items By index (e.g., get the N th element) By value (e.g., get the first element with the value "Chocolate" ) By properties (e.g., get the first elements where age<64 ) Add data Remove data Sorting and searching Simple numeric operations 4 Stroustrup/Programming - Nov'13

5. Observation We can (already) write programs that are very similar independent of the data type used Using an int isn t that different from using a double Using a vector isn t that different from using a vector 5 Stroustrup/Programming - Nov'13

6. Ideals We d like to write common programming tasks so that we don t have to re-do the work each time we find a new way of storing the data or a slightly different way of interpreting the data Finding a value in a vector isn t all that different from finding a value in a list or an array Looking for a string ignoring case isn t all that different from looking at a string not ignoring case Graphing experimental data with exact values isn t all that different from graphing data with rounded values Copying a file isn t all that different from copying a vector 6 Stroustrup/Programming - Nov'13

7. Ideals (continued) Code that s Easy to read Easy to modify Regular Short Fast Uniform access to data Independently of how it is stored Independently of its type 7 Stroustrup/Programming - Nov'13

8. Ideals (continued) Type-safe access to data Easy traversal of data Compact storage of data Fast Retrieval of data Addition of data Deletion of data Standard versions of the most common algorithms Copy, find, search, sort, sum, 8 Stroustrup/Programming - Nov'13

9. Examples Sort a vector of strings Find an number in a phone book, given a name Find the highest temperature Find all values larger than 800 Find the first occurrence of the value 17 Sort the telemetry records by unit number Sort the telemetry records by time stamp Find the first value larger than Petersen ? What is the largest amount seen? Find the first difference between two sequences Compute the pairwise product of the elements of two sequences What are the highest temperatures for each day in a month? What are the top 10 best-sellers? What s the entry for C++ (say, in Google)? What s the sum of the elements? 9 Stroustrup/Programming - Nov'13

10. 10 Generic programming Generalize algorithms Sometimes called lifting an algorithm The aim (for the end user) is Increased correctness Through better specification Greater range of uses Possibilities for re-use Better performance Through wider use of tuned libraries Unnecessarily slow code will eventually be thrown away G o from the concrete to the more abstract The other way most often leads to bloat Stroustrup/Programming - Nov'13

11. 11 Lifting example (concrete algorithms) double sum(double array[], int n) // one concrete algorithm (doubles in array) { double s = 0; for (int i = 0; i < n; ++i ) s = s + array[i]; return s; } struct Node { Node* next; int data; }; int sum(Node* first) // another concrete algorithm (ints in list) { int s = 0; while (first) { // terminates when expression is false or zero s += first->data; first = first->next; } return s; } Stroustrup/Programming - Nov'13

12. 12 Lifting example (abstract the data structure) // pseudo-code for a more general version of both algorithms int sum(data) // somehow parameterize with the data structure { int s = 0; // initialize while (not at end) { // loop through all elements s = s + get value; // compute sum get next data element; } return s; // return result } We need three operations (on the data structure): not at end get value get next data element Stroustrup/Programming - Nov'13

13. 13 Lifting example (STL version) // Concrete STL-style code for a more general version of both algorithms template // Iter should be an Input_iterator // T should be something we can + and = T sum(Iter first, Iter last, T s) // T is the accumulator type { while (first!=last) { s = s + *first; ++first; } return s; } Let the user initialize the accumulator float a[] = { 1,2,3,4,5,6,7,8 }; double d = 0; d = sum(a,a+sizeof(a)/sizeof(*a),d); Stroustrup/Programming - Nov'13

14. 14 Lifting example Almost the standard library accumulate I simplified a bit for terseness (see 21.5 for more generality and more details) Works for arrays vector s list s istream s Runs as fast as hand-crafted code Given decent inlining The code s requirements on its data has become explicit We understand the code better Stroustrup/Programming - Nov'13

15. The STL Part of the ISO C++ Standard Library Mostly non-numerical Only 4 standard algorithms specifically do computation Accumulate, inner_product, partial_sum, adjacent_difference Handles textual data as well as numeric data E.g. string Deals with organization of code and data Built-in types, user-defined types, and data structures Optimizing disk access was among its original uses Performance was always a key concern 15 Stroustrup/Programming - Nov'13

16. The STL Designed by Alex Stepanov General aim: The most general, most efficient, most flexible representation of concepts (ideas, algorithms) Represent separate concepts separately in code Combine concepts freely wherever meaningful General aim to make programming like math or even Good programming is math works for integers, for floating-point numbers, for polynomials, for 16 Stroustrup/Programming - Nov'13

17. Basic model Algorithms sort, find, search, copy, Containers vector, list, map, unordered_map, 17 iterators Separation of concerns Separation of concerns Algorithms manipulate data, but don t know about containers Algorithms manipulate data, but don t know about containers Containers store data, but don t know about algorithms Containers store data, but don t know about algorithms Algorithms and containers interact through iterators Algorithms and containers interact through iterators Each container has its own iterator types Each container has its own iterator types Stroustrup/Programming - Nov'13

18. The STL An ISO C++ standard framework of about 10 containers and about 60 algorithms connected by iterators Other organizations provide more containers and algorithms in the style of the STL Boost.org, Microsoft, SGI, Probably the currently best known and most widely used example of generic programming 18 Stroustrup/Programming - Nov'13

19. The STL If you know the basic concepts and a few examples you can use the rest Documentation SGI http://www.sgi.com/tech/stl/ (recommended because of clarity) Dinkumware http://www.dinkumware.com/refxcpp.html (beware of several library versions) Rogue Wave http://www.roguewave.com/support/docs/sourcepro/stdlibug/index.h tml More accessible and less complete documentation Appendix B 19 Stroustrup/Programming - Nov'13

20. Basic model A pair of iterators defines a sequence The beginning (points to the first element if any) The end (points to the one-beyond-the-last element) 20 begin: end: An iterator is a type that supports the iterator operations An iterator is a type that supports the iterator operations ++ Go to next element ++ Go to next element * Get value * Get value == Does this iterator point to the same element as that iterator? == Does this iterator point to the same element as that iterator? Some iterators support more operations (e.g. --, +, and [ ]) Some iterators support more operations (e.g. --, +, and [ ]) Stroustrup/Programming - Nov'13

21. Containers (hold sequences in difference ways) vector list (doubly linked) set (a kind of tree) 21 0 1 2 3 0 1 1 0 6 2 5 7 3 4 2 Stroustrup/Programming - Nov'13

22. The simplest algorithm: find() // Find the first element that equals a value template In find(In first, In last, const T& val) { while (first!=last && *first != val) ++first; return first; } void f(vector& v, int x) // find an int in a vector { vector::iterator p = find(v.begin(),v.end(),x); if (p!=v.end()) { /* we found x */ } // } 22 begin: end: We can ignore ( abstract away ) the differences between containers We can ignore ( abstract away ) the differences between containers Stroustrup/Programming - Nov'13

23. find() generic for both element type and container type void f(vector& v, int x) // works for vector of int s { vector:: iterator p = find(v.begin(),v.end(),x); if (p!=v.end()) { /* we found x */ } // } void f(list& v, string x) // works for list of string s { list:: iterator p = find(v.begin(),v.end(),x); if (p!=v.end()) { /* we found x */ } // } void f(set& v, double x) // works for set of double s { set:: iterator p = find(v.begin(),v.end(),x); if (p!=v.end()) { /* we found x */ } // } 23 Stroustrup/Programming - Nov'13

24. Algorithms and iterators An iterator points to (refers to, denotes) an element of a sequence The end of the sequence is one past the last element not the last element That s necessary to elegantly represent an empty sequence One-past-the-last-element isn t an element You can compare an iterator pointing to it You can t dereference it (read its value) Returning the end of the sequence is the standard idiom for not found or unsuccessful 24 0 1 2 3 the end: An empty sequence: begin: end: some iterator: Stroustrup/Programming - Nov'13

25. Simple algorithm: find_if() Find the first element that matches a criterion (predicate) Here, a predicate takes one argument and returns a bool template In find_if(In first, In last, Pred pred) { while (first!=last && !pred(*first)) ++first; return first; } void f(vector& v) { vector::iterator p = find_if(v.begin(),v.end,Odd()); if (p!=v.end()) { /* we found an odd number */ } // } 25 A predicate Stroustrup/Programming - Nov'13

26. Predicates A predicate (of one argument) is a function or a function object that takes an argument and returns a bool For example A function bool odd(int i) { return i%2; } // % is the remainder (modulo) operator odd(7); // call odd : is 7 odd ? A function object struct Odd { bool operator()(int i) const { return i%2; } }; Odd odd; // make an object odd of type Odd odd(7); // call odd : is 7 odd? 26 Stroustrup/Programming - Nov'13

27. Function objects A concrete example using state template struct Less_than { T val; // value to compare with Less_than(T& x) :val(x) { } bool operator()(const T& x) const { return x < val; } }; // find x<43 in vector : p=find_if(v.begin(), v.end(), Less_than(43)); // find x< "perfection" in list: q=find_if(ls.begin(), ls.end(), Less_than("perfection")); 27 Stroustrup/Programming - Nov'13

28. Function objects A very efficient technique inlining very easy and effective with current compilers Faster than equivalent function And sometimes you can t write an equivalent function The main method of policy parameterization in the STL Key to emulating functional programming techniques in C++ 28 Stroustrup/Programming - Nov'13

29. Policy parameterization Whenever you have a useful algorithm, you eventually want to parameterize it by a policy . For example, we need to parameterize sort by the comparison criteria struct Record { string name; // standard string for ease of use char addr[24]; // old C-style string to match database layout // }; vector vr; // sort(vr.begin(), vr.end(), Cmp_by_name()); // sort by name sort(vr.begin(), vr.end(), Cmp_by_addr()); // sort by addr 29 Stroustrup/Programming - Nov'13

30. Comparisons // Different comparisons for Rec objects : struct Cmp_by_name { bool operator()(const Rec& a, const Rec& b) const { return a.name < b.name; } // look at the name field of Rec }; struct Cmp_by_addr { bool operator()(const Rec& a, const Rec& b) const { return 0 < strncmp(a.addr, b.addr, 24); } // correct? }; // note how the comparison function objects are used to hide ugly // and error-prone code 30 Stroustrup/Programming - Nov'13

31. Policy parameterization Whenever you have a useful algorithm, you eventually want to parameterize it by a policy . For example, we need to parameterize sort by the comparison criteria vector vr; // sort(vr.begin(), vr.end(), [] (const Rec& a, const Rec& b) { return a.name < b.name; } // sort by name ); sort(vr.begin(), vr.end(), [] (const Rec& a, const Rec& b) { return 0 < strncmp(a.addr, b.addr, 24); } // sort by addr ); 31 Stroustrup/Programming - Nov'13

32. Policy parameterization Use a named object as argument If you want to do something complicated If you feel the need for a comment If you want to do the same in several places Use a lambda expression as argument If what you want is short and obvious Choose based on clarity of code There are no performance differences between function objects and lambdas Function objects (and lambdas) tend to be faster than function arguments 32 Stroustrup/Programming - Nov'13

33. vector template class vector { T* elements; // using value_type = T; using iterator = ???; // the type of an iterator is implementation defined // and it (usefully) varies (e.g. range checked iterators) // a vector iterator could be a pointer to an element using const_iterator = ???; iterator begin(); // points to first element const_iterator begin() const; iterator end(); // points to one beyond the last element const_iterator end() const; iterator erase(iterator p); // remove element pointed to by p iterator insert(iterator p, const T& v); // insert a new element v before p }; 33 Stroustrup/Programming - Nov'13

34. insert() into vector vector::iterator p = v.begin(); ++p; ++p; ++p; vector::iterator q = p; ++q; 34 6 0 2 1 3 4 5 v: p=v.insert(p,99); // leaves p pointing at the inserted element p=v.insert(p,99); // leaves p pointing at the inserted element p: 7 0 2 1 99 3 4 v: p: 5 q: q: Note: q is invalid after the insert() Note: q is invalid after the insert() Note: Some elements moved; all elements could have moved Note: Some elements moved; all elements could have moved Stroustrup/Programming - Nov'13

35. erase() from vector 35 p = v.erase(p); // leaves p pointing at the element after the erased one p = v.erase(p); // leaves p pointing at the element after the erased one vector elements move when you insert() or erase() vector elements move when you insert() or erase() Iterators into a vector are invalidated by insert() and erase() Iterators into a vector are invalidated by insert() and erase() 7 0 2 1 99 3 4 v: p: 5 q: 6 0 2 1 3 4 5 v: p: q: Stroustrup/Programming - Nov'13

36. list template class list { Link* elements; // using value_type = T; using iterator = ???; // the type of an iterator is implementation defined // and it (usefully) varies (e.g. range checked iterators) // a list iterator could be a pointer to a link node using const_iterator = ???; iterator begin(); // points to first element const_iterator begin() const; iterator end(); // points one beyond the last element const_iterator end() const; iterator erase(iterator p); // remove element pointed to by p iterator insert(iterator p, const T& v); // insert a new element v before p }; 36 T value Link* pre Link* post Link: Stroustrup/Programming - Nov'13

37. insert() into list list::iterator p = v.begin(); ++p; ++p; ++p; list::iterator q = p; ++q; 37 7 0 2 1 3 4 5 v: v = v.insert(p,99); // leaves p pointing at the inserted element p: 99 6 0 2 1 3 4 5 v: p: q: q: Note: q is unaffected Note: No elements moved around Stroustrup/Programming - Nov'13

38. erase() from list 38 7 0 2 1 3 4 5 v: p = v.erase(p); // leaves p pointing at the element after the erased one p: 99 6 0 2 1 3 4 5 v: p: Note: list elements do not move when you insert() or erase() q: q: Stroustrup/Programming - Nov'13

39. Ways of traversing a vector for(int i = 0; i::size_type i = 0; i::iterator p = v.begin(); p!=v.end(); ++p) // do something with *p Know both ways (iterator and subscript) The subscript style is used in essentially every language The iterator style is used in C (pointers only) and C++ The iterator style is used for standard library algorithms The subscript style doesn t work for lists (in C++ and in most languages) Use either way for vectors There are no fundamental advantages of one style over the other But the iterator style works for all sequences Prefer size_type over plain int pedantic, but quiets compiler and prevents rare errors 39 Stroustrup/Programming - Nov'13

40. Ways of traversing a vector for(vector::iterator p = v.begin(); p!=v.end(); ++p) // do something with *p for(vector::value_type x : v) // do something with x for(auto& x : v) // do something with x Range for Use for the simplest loops Every element from begin() to end() Over one sequence When you dont need to look at more than one element at a time When you dont need to know the position of an element 40 Stroustrup/Programming - Nov'13

41. Vector vs. List By default, use a vector You need a reason not to You can grow a vector (e.g., using push_back() ) You can insert() and erase() in a vector Vector elements are compactly stored and contiguous For small vectors of small elements all operations are fast compared to lists If you dont want elements to move, use a list You can grow a list (e.g., using push_back() and push_front() ) You can insert() and erase() in a list List elements are separately allocated Note that there are more containers, e.g., map unordered_map Stroustrup/Programming - Nov'13 41

42. Some useful standard headers I/O streams, cout, cin, file streams sort, copy, accumulate, inner_product, function objects hash table 42 Stroustrup/Programming - Nov'13

43. Next lecture Map, set, and algorithms 43 Stroustrup/Programming - Nov'13