Honors Biology Chapter 13: DNA Structure and Function

Honors Biology Chapter 13: DNA Structure and Function
paly

This chapter delves into the early scientific discoveries related to DNA, starting with Johann Friedrich Miescher's discovery of nuclein in 1868, which was later identified

  • Uploaded on | 1 Views
  • rasmuswu rasmuswu

About Honors Biology Chapter 13: DNA Structure and Function

PowerPoint presentation about 'Honors Biology Chapter 13: DNA Structure and Function'. This presentation describes the topic on This chapter delves into the early scientific discoveries related to DNA, starting with Johann Friedrich Miescher's discovery of nuclein in 1868, which was later identified. The key topics included in this slideshow are . Download this presentation absolutely free.

Presentation Transcript


Slide1Honors Biology Chapter  13 DNA  Structure  and Function Modified  By:  R.  LeBlanc 10/’11 Honors  Biology Chapter  13 DNA  Structure  and Function Modified  By:  R.  LeBlanc 10/’11

Slide2Early scientific discoveries. . .w Johann Friedrich Miescher  (1868) discovered “ nuclein ” later to be named  DNA.  Biologists ignored his discovery for 75 years. w P.A. Levene  (1920) discovered that there were 4 nitrogen base molecules  found in DNA. (R) (S) w Fred Griffith  (1928) while trying to find a vaccine for pneumonia, he discovered the process of transformation.  He used two strains of pneumonia bacteria: A harmless strain   (R)   with a “rough” surface and a deadly strain   (S)   with a “smooth” surface.

Slide3Griffith’s Experiment Griffith’s  Experiment What was the conclusion from this experiment?

Slide4How was this possible?   Couldit be TRANSFORMATION?

Slide5Summary  of  Griffith’s Experiment A  Summary  of  Griffith’s Experiment This  experiment  clearly demonstrated  the  presence  of  a hereditary  material  &  its  ability to  be  transferred  from  one organism  to  another! This  experiment  clearly demonstrated  the  presence  of  a hereditary  material  &  its  ability to  be  transferred  from  one organism  to  another!

Slide6Which Substance (DNA or Protein)Carried the Hereditary Information? w Oswald Avery  (1944) added  protein- digesting enzymes  to cells, but transformation occurred  anyway. w DNA-destroying enzymes   stopped transformation . w So, what did Avery’s experiment prove? w Most biochemists ignored Avery’s work, claiming that his results probably only applied to  bacteria . w Proteins  were still believed to be the carriers of  hereditary information .

Slide7What runs the cell, DNA or proteins?w Researchers like Delbruck, Hershey, & Luria  in the 1950’s began using viruses called  bacteriophages to study the transfer of genetic information. w These are made of only two things: • DNA • Protein .

Slide8Bacteriophages: Valuable  Tools  in  Finding  the Identity  of  the  Hereditary  Substance. Bacteriophages:  Valuable  Tools  in  Finding  the Identity  of  the  Hereditary  Substance. – genetic material – viral coat – sheath – base plate – tail fiber bacterial cell wall plasma membrane cytoplasm In the electron microscope image above, bacteriophages are infecting an E. coli bacterium.

Slide9Confirmation of DNA Functionw Alfred Hershey and Martha Chase (1952) used radioisotope tracers on viruses. w What did this prove? (see the next slide) virus particle labeled with  35 S virus particle labeled with  32 P bacterial  cell  (cutaway  view) bacterial  cell  (cutaway  view) label  outside  cell label  outside  cell label  inside  cell label  inside  cell

Slide10Chapter 10 Hershey and Chase ’ s  Experiments

Slide11The Search for DNA’s Structurew Linus Pauling  (1951) discovered the  3-D structure of proteins, & the presence of 20 essential  amino acids . w What were the 3D structures of proteins? w Following his discovery, scientists began to believe that the  three-dimensional structure of DNA  could also be discovered. 3D Model of hemoglobin

Slide12The Base  Pairing  Rule The  Base  Pairing  Rule A  with  T  and  C  with  G w Base pairing between the two nucleotide strands in DNA is constant  for all species ( A  with  T  and  C  with  G ). w The  sequence  of bases is different from species to species. one  base  pair one  base  pair Erwin  Chargaff (1)  The  amount  of  adenine  relative to  guanine  differs  from  one  species  to  the  next, (2)  the amount  of  adenine   in  a  DNA  molecule  is  always  equal to  the  amount  of  thymine   &  the  amount  of  guanine   is always  equal  to  the  amount  of  cytosine ! – In 1949,  Erwin  Chargaff  disclosed 2 important clues to DNA’s structure:  (1)  The  amount  of  adenine  relative to  guanine  differs  from  one  species  to  the  next,   (2)  the amount  of  adenine   in  a  DNA  molecule  is  always  equal to  the  amount  of  thymine   &  the  amount  of  guanine   is always  equal  to  the  amount  of  cytosine !

Slide13DNA - a spiral double helixw Rosalind  Franklin w Rosalind  Franklin  (left)  - A crystallographer who identified the  helical  shape of DNA by using  x-ray defraction . w A picture of a  DNA refraction-----------> – Her work provided the evidence needed to solve the mystery of DNA structure.

Slide14Rosalind Franklin’s X-ray of DNACAN YOU SEE THE X IN THE MODEL TO THE RIGHT?? Can you see the steps of the twisted ladder (helix) in the photograph?  Why is the 4 th  step smeared?

Slide15wJames Finally, in 1953, James Watson & Francis Crick (left) solved the mystery of the structure of the DNA molecule. For this achievement they were awarded the Nobel Prize.

Slide16The Structure of DNAnucleotides  w The DNA molecule is made up of smaller units known as  nucleotides  (shown below) . three w A nucleotide is composed of  three  parts: deoxyribose  sugar • A five-carbon  deoxyribose  sugar … phosphate  group • A  phosphate  group … nitrogen-containing  bases • One of four  nitrogen-containing  bases : • Adenine • Adenine • Guanine • Guanine • Cytosine • Cytosine • Thymine • Thymine

Slide17wDNA hydrogen  bonds w DNA  - chains (2 strands) of  nucleotides  joined by hydrogen  bonds  between bases. twisted  ladder double helix w A “ twisted  ladder ” shape known as a “ double helix ” is formed. w A.  DNA Replication : w  Each organism has its unique  nucleotide w own  unique  nucleotide w sequence w sequence  in its DNA. w DNA must be copied w for cell division replication w (  replication ). The sides of the DNA ladder are made of sugars & phosphate groups. The “rungs” of the ladder are made of nitrogenous bases.

Slide18DNA Replication

Slide20Chapter 10 Comparing DNA and RNA

Slide21DNA Replicationw DNA polymerases attach free nucleotides to the unzipped strands. w DNA ligases  seal new short stretches of nucleotides into one continuous strand. w In which direction is a DNA molecule built? w 5’ to 3’

Slide23DNA Organization in Chromosomesw Each  chromosome consists of  one  DNA molecule. w Proteins  keep all the DNA from becoming a tangled mess. w Histones  are like  spools for winding up small stretches of DNA. w A  nucleosome  is a  DNA- protein spool.