# Using Indirect Measurement to Solve Problems with Similar Triangles

This lesson focuses on the concept of indirect measurement and how it can be used to solve problems involving similar triangles. Students will explore real-world scenarios, such as measuring the height

## About Using Indirect Measurement to Solve Problems with Similar Triangles

PowerPoint presentation about 'Using Indirect Measurement to Solve Problems with Similar Triangles'. This presentation describes the topic on This lesson focuses on the concept of indirect measurement and how it can be used to solve problems involving similar triangles. Students will explore real-world scenarios, such as measuring the height. The key topics included in this slideshow are . Download this presentation absolutely free.

## Presentation Transcript

Slide1Main Idea/Vocabulary• indirect measurement • Solve problems involving similar triangles.

Slide2Example 1Use Shadow Reckoning TREES    A tree in front of Marcel’s house has a shadow 12 feet long. Marcel’s shadow is 3 feet long. If Marcel is 5.5 feet tall, how tall is the tree?

Slide3Example 1Use Shadow Reckoning Answer:   The tree is 22 feet tall. tree’s shadow tree’s height Marcel’s shadow Marcel’s height 12  ● 5.5 = 3 ●  h Find the cross products. Multiply. Simplify. Divide each side by 3.

Slide41.A 2. B 3. C 4. D Example 1 A. 4.5 feet B. 5 feet C. 5.5 feet D. 6 feet Jayson casts a shadow that is 10 feet long. At the same time, a flagpole casts a shadow that is 40 feet long. If the flagpole is 20 feet tall, how tall is Jayson?

Slide5Example 2Use Indirect Measurement SURVEYING   The two triangles shown in the figure are similar. Find the distance  d  across the stream.

Slide6Example 2Use Indirect Measurement Answer:   The distance across the stream is 16 meters. Write a proportion. AB   =  48,  ED   =   d ,  BC  =  60, and  DC  =  20 Multiply. Then divide each side by 60. 48  ● 20 =  d  ● 60 Find the cross products. Simplify.

Slide71.A 2. B 3. C 4. D Example 2 A. 6 feet B. 6.5 feet C. 7 feet D. 7.5 feet SURVEYING    The two triangles shown in the figure are similar. Find the distance  d  across the stream.

Slide81.A 2. B 3. C 4. D Five Minute Check 1  (over Lesson 4-8) Find the coordinates of the image of the parallelogram  ABCD  after a dilation with a scale factor of 2. Parallelogram  ABCD  has vertices at  A (1, 1),  B (3, 3),  C (6, 3),  D (4, 1). A. A ′(2, 2),  B ′(6, 6),  C ′(12, 6),  D ′(8, 2) B. A ′(1, 2),  B ′(5, 6),  C ′(12, 12),  D ′(8, 2) C. A ′(6, 6),  B ′(2, 2),  C ′(12, 6),  D ′(2, 8) D. A ′(2, 2),  B ′(6, 6),  C ′(6, 12),  D ′(8, 2)

Slide91.A 2. B 3. C 4. D Five Minute Check 2  (over Lesson 4-8) A. B. C. D.

Slide101.A 2. B 3. C Five Minute Check 3  (over Lesson 4-8) Parallelogram  ABCD  has vertices at  A (1, 1),  B (3, 3),  C (6, 3),  D (4, 1). Identify whether the image of parallelogram  ABCD  after a dilation with a scale factor of 2 is an enlargement or a reduction. A. enlargement B. reduction C. cannot be determined

Slide111.A 2. B 3. C Five Minute Check 4  (over Lesson 4-8) A. enlargement B. reduction C. cannot be determined

Slide121.A 2. B 3. C 4. D Five Minute Check 5  (over Lesson 4-8) Triangle  M  is similar to triangle  N . What scale factor was used to dilate triangle  N  to  M ? A. 3 B. 2 C. D.

Slide13End of Custom Shows