# Newtonian Mechanics Equations for Uniformly Accelerated Motion  This set of equations includes two formulas for calculating uniformly accelerated motion, one missing the variable for displacement (x) and the other missing the variable for final velocity (v).

• Uploaded on | 2 Views
• nellikeranen

## About Newtonian Mechanics Equations for Uniformly Accelerated Motion

PowerPoint presentation about 'Newtonian Mechanics Equations for Uniformly Accelerated Motion'. This presentation describes the topic on This set of equations includes two formulas for calculating uniformly accelerated motion, one missing the variable for displacement (x) and the other missing the variable for final velocity (v).. The key topics included in this slideshow are . Download this presentation absolutely free.

## Presentation Transcript

Slide1

Slide2Newtonian Mechanics• Equation for uniformly-accelerated motion that is missing the variable: x (displacement) • v = v₀ + at m/s • v = final velocity m/s • v₀ = initial velocity m/s • a = acceleration m/s 2 • t = time s 2

Slide3Newtonian Mechanics• Equation for uniformly-accelerated motion that is missing the variable: v (final velocity) • x = x₀ + v₀t + ½at² m • x = final displacement m • x₀ = initial displacement m • v₀ = initial velocity m/s • a = acceleration m/s 2 • t = time m 3

Slide4Newtonian Mechanics• Equation for uniformly-accelerated motion that is missing the variable: t (time) • v² = v₀² + 2a(x – x 0 ) (m/s) 2 • v = final velocity m/s • v 0  = initial velocity m/s • a = acceleration m/s 2 • x = final displacement m • x 0  = initial displacement m 4

Slide5Newtonian Mechanics• Equation for net force – Newton’s 2 nd  Law • Σ F  =  F net  = m a N • F = force N • m = mass  kg • a = acceleration m/s 2 5

Slide6Newtonian Mechanics• Equation for the force of friction • F fric  ≤  μ N N • F = force N • μ  = coefficient of friction none • N = normal force N 6

Slide7Newtonian Mechanics• Equation for centripetal acceleration • a c  = v 2 /r m/s 2 • a = acceleration m/s 2 • v = velocity m/s • r = radius or distance m 7

Slide8Newtonian Mechanics• Equation for torque • τ  = rF sin  Θ Nm • τ  = torque Nm • r = radius or distance m • F = force N • Θ  = angle degrees 8

Slide9Newtonian Mechanics• Equation for momentum • p = mv kg m/s • p =  momentum kg m/s • m = mass kg • v = velocity m/s 9

Slide10Newtonian Mechanics• Equation for impulse • J = F ∆t = ∆p kg m/s • J = impulse kg m/s • F = force N • t = time s • p = momentum kg m/s 10

Slide11Newtonian Mechanics• Equation for kinetic energy • K = ½ mv 2   J = kg m 2 /s 2 • K = kinetic energy J • m = mass kg • v = velocity m/s 11

Slide12Newtonian Mechanics• Equation for gravitational potential energy • ∆U g  = mgh J = kg m/s 2  m • U = potential energy J • m = mass kg • g = gravitational acceleration m/s 2 • h = height m 12

Slide13Newtonian Mechanics• Equation for work done on a system • W = F ∆r cos  Θ J = N m • W = work done on a system J • F = force N • r = radius or distance m • Θ  = angle degrees 13

Slide14Newtonian Mechanics• Equation for average power • P avg  = W/∆t Watt = N / s • P = power Watt • W = work done on a system N • t = time s 14

Slide15Newtonian Mechanics• Equation for instantaneous power • P = Fv cos  Θ Watt = N/s • P = power W • v = velocity m/s •   Θ  = angle degrees 15

Slide16Newtonian Mechanics• Equation for Hooke’s Law • F s  = -kx N • F = force N • k = spring constant N/m • x = radius or distance m 16

Slide17Newtonian Mechanics• Equation for potential energy of a spring • U s  = ½ kx 2 N/m m 2 • U = potential energy N/m m 2 • k = spring constant N/m • x = radius or distance m 17

Slide18Newtonian Mechanics• Equation for period of a spring • T s  = 2 π (m/k) 1/2 s • T = period s • m = mass kg • k = spring constant N/m 18

Slide19Newtonian Mechanics• Equation for period of a pendulum • T p  = 2 π (l/g) 1/2 s • T = period s • l = length m • g = gravitational acceleration m/s 2 19

Slide20Newtonian Mechanics• Equation for period and frequency • T = 1/f s • T = period s • f = frequency cycles = Hertz = cycles/s 20

Slide21Newtonian Mechanics• Equation for gravitational force – Law of Universal Gravitation • F g  = - (Gm 1 m 2 )/r 2 N • F = force N • G = gravitational constant Nm 2 /kg 2 • m = mass kg • r = radius or distance m 21

Slide22Newtonian Mechanics• Equation for gravitational potential energy • U g  = - (Gm 1 m 2 )/r J • F = force N • G = gravitational constant  Nm 2 /kg 2 • m = mass kg • r = radius or distance m 22