"Model Pathways in the BOREAM BIOSOA Chemical Model"

paly

This article presents the BOREAM model for pinene and pinene SOA, developed in April 2013. The BOREAM model utilizes a primary

  • Uploaded on | 1 Views
  • janis janis

About "Model Pathways in the BOREAM BIOSOA Chemical Model"

PowerPoint presentation about '"Model Pathways in the BOREAM BIOSOA Chemical Model"'. This presentation describes the topic on This article presents the BOREAM model for pinene and pinene SOA, developed in April 2013. The BOREAM model utilizes a primary. The key topics included in this slideshow are . Download this presentation absolutely free.

Presentation Transcript


Slide1Model pathways in the detailed chemicalmodel BOREAM BIOSOA, April 2013

Slide2BOREAM model BOREAM  model • Model for  α -pinene and  β -pinene SOA • Primary chemistry: based on theoretical (quantum calculations) and experimental rates, SARs • Secondary chemistry: generated automatically based on SARs • Generic chemistry for not-explicitly treated species • Version for long-term SOA ageing: 65000 equations • Version for specific tracers: 21000 equations, but more detail on specific pathways • Update of photolysis rates currently underway

Slide3α-pinene  +  OH α -pinene  +  OH • Based on Peeters et al. (2001),      Fantechi et al. (2002),      Vereecken et al. (2007) • High-NO x : large      pinonaldehyde yield • Low-NOx: multifunctional      hydro-peroxides • Some unusual isomerisations      of peroxy and alkoxy radicals      (Vereeecken et al., 2007)

Slide4α-pinene  +  O 3 α -pinene  +  O 3 • Based on Fantechi et al. 2002, Capouet et al. 2008 • 2 Criegee intermediates • CI-1 leads to additional acids     such as pinic, pinalic and     hydroxypinonic acid

Slide5Pinonaldehyde +  OH, photolysis Pinonaldehyde  +  OH, photolysis • Based on Fantechi et al. (2002) • Vereecken & Peeters (2002) for      the  OH H-abstraction rates

Slide6SOA ageing  experiments SOA  ageing  experiments • Yasmeen et al. 2012, E0802 • Low-NO x • Initial  α -pinene: 252 ppb • Initial O 3 : 1400 ppb, no OH-scavenger • First hour: dark ozonolysis and OH oxidation • After 1 hour: irradiation with solar-like spectrum for 219 minutes • Experimental SOA mass yield: 26% (assuming density 1 g/cm 3 ,  but  ρ =1,32g/cm 3   would give 34,3%) • Model SOA mass yield: 43,5%

Slide7BOREAM modeled SOA  Composition  for E0802  in  Yasmeen  et al.2012 BOREAM  modeled SOA  Composition  for E0802  in  Yasmeen  et al.2012 • Composition after 1 hour, before start irradiation • Pinic and pinonic acid: 7 and 6,5% of SOA • Many multifunctional hydroperoxides, dicarbonyl species

Slide8BOREAM Model  concentrations  for  tracers in  E0802  in  Yasmeen  et  al.  2012 BOREAM  Model  concentrations  for  tracers in  E0802  in  Yasmeen  et  al.  2012 Name BOREAM (ppt) 8-Hydroxypinonic  acid 29 10-Hydroxy  pinonic  acid 210* Diaterpenylic  acid 53 Norpinic  acid 11 Terpenylic  acid 0.003** Diaterpenylic  acid  acetate < 0.001** MBTCA  (conventional  chem.) < 0.001 MBTCA  (pinonic  acid  direct pathway,  Müller  et  al.  2012) 2.8 M172  (keto-diol) 1298 *A direct, but mechanistically unresolved formation of 2% of 10-hydroxypinonic acid from CI-1 was added in BOREAM, together with 10% pinalic acid and 6% pinic acid, based on Yu et al  (1999) . This production is not included in this value, which represents all explicit resolved pathways in the current mechanism. ** A newly proposed pathway for ester formation from an alkoxy radical could potentially lead to several 10s of ppt of terpenylic acid and diaterpenylic acid acetate from pinonic acid. A similar pathway might perhaps be present in the pinonaldehyde mechanism, although there it  would  need to compete against a fast 1,5-H.shift

Slide910-hydroxy pinonic acid  and  8-hydroxy pinonic  acid 10-hydroxy  pinonic acid  and  8-hydroxy pinonic  acid • 10-hydroxy pinonic acid: Main pathway through the hydroperoxide channel of CI-1 (0.207 ppb) • Pinonic pathway is minor • 8-hydroxy pinonic acid: pathway from pinonic acid leads to 0.0294 ppb

Slide10Diaterpenylic acid Diaterpenylic  acid • Main pathway through the minor (21%) hydroperoxide radicalar channel from CI-1 • Main bottlenecks: 2 times reaction of acyl peroxy radical with HO 2  or RO 2  to form carboxylic acid (each 10-fold reduction of reaction flow)

Slide11Norpinic acid Norpinic  acid • Low model yield (10 ppt), mainly from pinalic acid OH- oxidation • Main bottleneck: OH-oxIdation of pinalic acid, with a reduction of 60 of the reaction flow • Pinic acid oxIdation gives only a minor contribution, due to slow OH oxIdation, as it’s mainly in the SOA

Slide12Terpenylic acid: conventional  gas  phase chemistry Terpenylic  acid: conventional  gas  phase chemistry • Very low yield of 0.0026 ppt • Unfavourable competition from peroxy radical ring- closure isomerisation for the formation of the sy-alkoxy radical • Required OH- oxydations are too slow for duration of experiment • Only 10-15% branching towards carboxylic acid for acyl peroxy radicals

Slide13Diaterpenylic acid acetate:  conventional gas  phase  chemistry Diaterpenylic  acid acetate:  conventional gas  phase  chemistry • Extremely low yield of 0.00047 ppt • Similar bottlenecks as for terpenylic acid: • Unfavourable competition from peroxy radical ring-closure isomerisation for the formation of the sy- alkoxy radical (low-NO x ) • Required OH-oxydations are too slow for duration of experiment • Only 10-15% branching towards carboxylic acid for acyl peroxy radicals (2 times)

Slide14MBTCA:  “forced” direct  pathway  from Müller  et  al.  2012 MBTCA:   “forced” direct  pathway  from Müller  et  al.  2012 • 1% yield from pinonic acid experimentally • Conventional gas phase chemsitry: requires about 3 to 4 subsequent OH oxidations • Unfavorable carboxylic acid yields • Proposed pathway by L.Müller et al. requires 3 probably very unlikely steps • Even then yields are low due to slow pinonic acid oxidation

Slide15M172 product (dinorpinic  acid) M172  product (dinorpinic  acid) • Difficult to find conventional pathway, as removal of a methyl group normally leads to replacement by an oxygenated group (H-shifts for alkyl radicals are unlikely) • Other product with nearly identical mass, but 9 carbons is present in high yield

Slide16Alternative pathway towards  terpenylic  acid and  diaterpenylic  acid acetate Alternative  pathway towards  terpenylic  acid and  diaterpenylic  acid acetate • Involves alkoxy radical ester formation • Proposed by J. Dommen et al. to explain acetate in CMK photo-oxidation (Praplan et al. 2012) • Probably exothermal • Probably energy barrier comparable to acetone elimination • No quantum calculations yet